FLOODABLE CROSS-SECTIONAL AREA AND SLOPE TO THE NEAREST DRAINAGE AS EXTENSIONS OF THE HAND MODEL: MAPPING FLOOD SUSCEPTIBILITY IN THE REGION OF LUCAS DO RIO VERDE, MATO GROSSO STATE, BRAZIL

ÁREAS DA SEÇÃO TRANSVERSAL INUNDÁVEL E DECLIVIDADE EM RELAÇÃO AO CURSO D’ÁGUA MAIS PRÓXIMO COMO EXTENSÕES DO MODELO HAND: MAPEAMENTO DE SUSCEPTIBILIDADE À INUNDAÇÃO NA REGIÃO DE LUCAS DO RIO VERDE, MATO GROSSO, BRASIL

ÁREAS DE SECCIÓN TRANSVERSAL INUNDABLE Y DECLIVIDAD EN RELACIÓN AL CURSO DE AGUA MÁS CERCANO COMO EXTENSIÓN AL MODELO HAND: MAPEO DE SUSCEPTIBILIDAD A INUNDACIÓN EN LA REGIÓN DE LUCAS DO RIO VERDE, MATO GROSSO, BRASIL

Vitor Vieira Vasconcelos
Universidade Federal do ABC, Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, São Bernardo do Campo, Brasil. vitor.v.v@gmail.com

Ciro Lótfi Vaz
WayCarbon, Universidade Federal do Rio de Janeiro, Brasil cirobh@gmail.com

Marco Follador
WayCarbon, Instituto BioAtlântica, Itália mfollador@waycarbon.com

Melina Amoni Silveira Alves
WayCarbon, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Brasil melina.amoni@waycarbon.com

ABSTRACT
The HAND (Height Above the Nearest Drainage) model has been applied as a robust indicator for mapping flood susceptibility and the gradients of hydrological-edaphic-ecological processes. This paper extends the HAND model by combining the vertical and horizontal distances in relation to the nearest drainage to generate the indicators of floodable cross-sectional area and slope to the nearest drainage. The HAND, cross-sectional area, conventional slope, and slope to the nearest drainage indicators are combined for distinct analyses of flood susceptibility mapping in the Lucas do Rio Verde region, Mato Grosso State, Brazil. The indicators of cross-sectional area and slope to the nearest drainage were spatially consistent with the expected hydrogeomorphological characteristics. The maps based on floodable cross-sectional area, when compared to those based on the HAND model, were more restrictive in areas further from watercourses, especially when combined with slope classes.

Keywords: Flood; GIS; HAND; Rio Verde; Spatial analysis; Water resources.

RESUMO
O modelo HAND (Height Above the Nearest Drainage) tem sido aplicado como um indicador robusto para mapeamento de susceptibilidade a inundações e gradientes de processos hidrológicos-edáficos-ecológicos. Este artigo estende o modelo HAND ao combinar a altura e a distância horizontal em relação ao corpo hídrico mais próximo, para gerar indicadores da área da seção transversal inundável e
a declividade em relação ao corpo hídrico mais próximo. Os indicadores HAND, área da seção transversal, declividade convencional e declividade em relação ao corpo hídrico mais próximo são combinadas de forma a testar diferentes possibilidades de mapeamento de susceptibilidade a inundações, com aplicação na região do Lucas do Rio Verde, em Mato Grosso, Brasil. Os indicadores de área de seção transversal e de declividade em relação a corpo hídrico mais próximo apresentaram-se espacialmente consistentes com as características hidrogeomorfológicas esperadas. Os mapas utilizando a área da seção transversal alagável, se comparados ao HAND, foram mais restritivos em áreas mais distantes aos cursos de água, especialmente quando combinados com as classes de declividade.

Palavras-chave: Inundação; SIG; HAND; Rio Verde; Análise espacial; Recursos hídricos.

RESUMEN

El modelo HAND (*Height Above the Nearest Drainage*) ha sido aplicado como un indicador robusto para mapeo de susceptibilidad a inundaciones e gradientes de procesos hidrológicos-edáficos-ecológicos. Este artículo extiende el modelo HAND combinando la altura y la distancia horizontal em relación al cuerpo hídrico más cercano, para generar indicadores del área de sección transversal inundable e la declividad en relación a el cuerpo hídrico más cercano. Los indicadores HAND, área de la sección transversal, declividad convencional y declividad en relación al cuerpo hídrico más cercano fueron combinados para probar diferentes posibilidades de mapeo de susceptibilidad a inundaciones, con una aplicación en la región de Lucas do Rio Verde, en Mato Grosso, Brasil. Los indicadores de área de sección transversal y de declividad en relación al cuerpo hídrico más cercano se presentan espacialmente consistentes con las características hidrogeomorfológicas esperadas. Los mapas utilizando el área de la sección transversal inundable, si se comparan con el HAND, fueron más restrictivos en áreas más distantes a los cursos de agua, especialmente cuando se combinan con las clases de declividad.

Palabras clave: Inundación; SIG; HAND; Rio Verde; Análisis espacial; Recursos hídricos.

INTRODUCTION

The Height Above the Nearest Drainage (HAND) model is based on a digital elevation model (DEM), and the drainage network is used as a relative reference. An initial height of 0 meters is established, and the heights to the remaining cells of the DEM are recalculated following the overland flow routes to the nearest water body (RENNÓ et al., 2008; NOBRE et al., 2011). In this method, the height is not defined by altimetry but in relation to the terrain unevenness to the nearest stream. The resulting indicator is helpful for estimating the water table depth, soil humidity and flood propensity based on a DEM and hydrographic data (NOBRE et al., 2011a; SILVA et al., 2011). Therefore, in the literature, HAND has been referred to either as a model (when focusing on flow route modeling) or an indicator (when focusing on the final output value per raster pixel). As a territorial planning tool, the height to the nearest drainage is useful for flood susceptibility estimation, wetland delineation based on geotechnical restrictions for building, and the conservation of the environmental and hydrological services of wetlands (VARALLO et al., 2016).
After the HAND model was proposed by Rennô et al. (2008), many Geographical Information Systems (GISs) have incorporated algorithms to measure this indicator (Table 1). However, before the use of the HAND model, Rennô et al. (2008) noted that DEMs should be pre-processed through entrenching (burning) depressions rather than simply filling them because entrenchment better preserves the hydrologic flow routes of the original DEM. The best algorithms in Table 1 calculate the HAND indicator using the original DEM and a flow route model from a pre-processed and hydrologically consistent second DEM. In this approach, the HAND model is not affected by changes in the DEM cells during the pre-processing phase. Additionally, Table 1 shows whether each algorithm complementarily generates the horizontal distance to the nearest stream, in addition to HAND (i.e., the vertical distance), using the same flow route to the nearest drainage as a reference.

Table 1: A comparison of the algorithms used to generate the HAND model

<table>
<thead>
<tr>
<th>Software</th>
<th>HAND using a hydrologically consistent DEM</th>
<th>HAND using an original DEM (and hydrologically consistent flow routes)</th>
<th>Horizontal distance to the nearest drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArcGIS</td>
<td>Yes</td>
<td>Yes (Taudem)</td>
<td>Yes</td>
</tr>
<tr>
<td>QGIS</td>
<td>Yes (Taudem, WOIS script in R)</td>
<td>Yes (Taudem)</td>
<td>Yes (Taudem)</td>
</tr>
<tr>
<td>SAGA</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>GRASS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Terraview (TerraHidro)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Taudem</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Whitebox GAT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ANA HAND App</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>INPE HAND App</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Source: the authors.

Based on an analysis of many recent papers that employed the HAND model (Table 2), a relative robustness in the classes of the HAND indicator was observed based on the attributes of the hydrological dynamics and the distinct characteristics of the study area. However, these studies noted that local variabilities must be considered, and the method must be adjusted accordingly, such as in the case of the human disruption of a drainage network or...
in distinct hydrogeomorphological contexts (floodplains, headwaters, etc.) (DIAS, 2014; NOBRE et al., 2015).

In addition to the HAND approach, another research method presented in the academic literature attempts to map flood susceptibility based on the slope, horizontal distance to rivers and altimetry stratification. Table 3 presents some of these studies and the respective slope classes. Although the slope classes are relatively consistent, these studies emphasize that the horizontal distance and altimetry stratification vary significantly according to the environmental characteristics of each mapped area (DED, 2013; PRINA; TRETIN, 2014; CHAVES; PEIXOTO FILHO, 2015). This finding is in agreement with the findings of Silva et al. (2012), who proposed that the height to the nearest drainage is a more robust criterion for delimiting ecologically and hydrologically relevant areas than is using only the horizontal distance in the method currently stipulated by Brazilian environmental laws.

This paper proposes the use of the floodable cross-sectional area and slope to the nearest drainage as extensions of the HAND model. In this context, the HAND indicator, conventional slope, slope to the nearest drainage, and floodable cross-sectional area are applied and tested in the region of Lucas do Rio Verde to evaluate their spatial results regarding flood susceptibility. The study area is within the Rio Verde Basin, in the state of Mato Grosso and was selected due to the interest of food chain companies in evaluating the flood risks of their units in this area.

Table 2: Classifications of HAND indicators in the academic literature

<table>
<thead>
<tr>
<th>Study Area</th>
<th>HAND Classes</th>
<th>Characteristics</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon, Asu, Brazil</td>
<td>0-5.3 - Floodplain 5.3 - 15 - Ecotone > 15 - High land (changes to plateaus for slopes < 7.5%)</td>
<td>Forested environment of high land systems (flooded seasonally), equatorial climate</td>
<td>Rennó et al. (2008); Nobre et al. (2011b)</td>
</tr>
<tr>
<td>São Paulo city, including the Tieté and Pinheiros Rivers, Brazil</td>
<td>The same as Rennó et al. (2008)</td>
<td>Hill, terrace and plain systems, tropical climate</td>
<td>Nobre et al. (2011a)</td>
</tr>
<tr>
<td>Wark Catchment, Grand Duchy of Luxembourg</td>
<td>0-5.9 - Wetland ecosystems > 5.9 - High land (changes to plateaus for slopes < 0.129)</td>
<td>82 km² basin, temperate climate</td>
<td>Gharari (2011a; 2011b; 2014)</td>
</tr>
<tr>
<td>Manaus Municipality, Brazil</td>
<td>The same as Rennó et al. (2008)</td>
<td>Confluence of the Negro and Solimões Rivers in the Amazon River basin, equatorial climate</td>
<td>Rodrigues et al. (2011)</td>
</tr>
<tr>
<td>Confluence of the Negro and Solimões, Brazil</td>
<td>< 8 - Floodable areas > 8 - Non-floodable areas</td>
<td>Floodplain of large basins, equatorial climate</td>
<td>Alfaya (2012)</td>
</tr>
<tr>
<td>Grijalva-Usumacinta catchment, southeastern Mexican states of Tabasco and Chiapas</td>
<td>< 8 - Floodable > 8 - Not floodable Validated with remote sensing classification</td>
<td>Tropical climate</td>
<td>Schlaffer et al. (2012)</td>
</tr>
<tr>
<td>Paraíba do Sul River Basin, Brazil</td>
<td>\leq 5 - Lowlands, flooded or floodable areas 6 to 15 - Transitional areas and ecotones</td>
<td>Mountainous relief with entrenched valleys, tropical climate</td>
<td>Silva et al. (2013)</td>
</tr>
</tbody>
</table>
Study Area

<table>
<thead>
<tr>
<th>HAND Classes</th>
<th>Characteristics</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 to 50 - Slopes > 50 - Hills</td>
<td>Validated with a hydraulic model in which the floodable area was 80% lowlands and 20% ecotones.</td>
<td></td>
</tr>
</tbody>
</table>

Ouro Preto city, Brazil

< 5.15 - Floodable areas

Mountainous relief with entrenched valleys, tropical mountainous climate

Santos et al. (2013)

Chao Phraya River Basin, Thailand

0-1 - Area with high flood susceptibility

Flood plain of a large basin

Westerhoff et al. (2013)

Rio Grande do Sul State, Brazil

The HAND limit in flooded areas of paddy varied from 8 to 40 meters depending on the area. The majority of the flooded area was below 5.5 meters in the HAND model.

Plain to gently wavy relief, temperate climate

Mengue (2013)

Upper Heihe River, China

< 5 - Wet ecosystem

Mountainous relief, cold temperate climate

Gao et al. (2014)

Mid-basin of the Araguaia River, Brazil

Different flood limits, depending on the altimetry in the basin:

- HAND > 260 m < 2
- 240-260 m < 3
- 220-180 m < 5

Seasonal floodplain with murundu fields, equatorial climate

Dias (2014)

Nile basin in Sudan and Chad

< 6 - Floodable areas

Validated with remote sensing

Plains and humid downstream, and desert with an alluvial plain upstream

Guzinski et al. (2014)

Lower Magdalena River basin, Colômbia

HAND Return period

- < 2.8 2.33 years
- < 5.5 20 years
- < 7.8 100 years

Flood plain, equatorial climate

Mesa (2014)

Confluence of the Severn and Avon Rivers, southwestern United Kingdom

< 10 - Floodable

Temperate climate

Schlaffer et al. (2015)

Itajai-Açú River Valley, Brazil

< 13 - Maximum flood level in 2011

Flood plain, temperate climate

Nobre (2015)

Source: the authors.

Table 3: Values for slope classification for flood susceptibility evaluation in the academic literature

<table>
<thead>
<tr>
<th>Study area</th>
<th>Classification</th>
<th>Characteristics of the study area</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical work (no specific study area)</td>
<td>< 2% - Well-defined floodplain if the river is not entrenched</td>
<td>Theoretical work</td>
<td>Rosgen (1994)</td>
</tr>
<tr>
<td>Theoretical work (no specific study area)</td>
<td>< 2% - Plain areas that become floodable if they are near the drainage network 2-5% - Plain areas characterized by sediment depositional processes 5-15% - Wavy areas with moderate surface dynamics leading to accentuated erosive processes > 15% - Hillslopes vulnerable to landslides and mass movements</td>
<td>Theoretical work with classes based on the experience of the Technological Research Institute (IPT) of São Paulo State</td>
<td>Moreira and Pires Neto (1998)</td>
</tr>
<tr>
<td>High Itu River basin, in the municipalities of Santiago, Unistalda and São Francisco de Assis in the state of Rio Grande do Sul, Brazil</td>
<td>The same as Moreira and Pires Neto (1998)</td>
<td>Temperate climate, headwaters of the basin</td>
<td>Trentin and Robaina (2005)</td>
</tr>
</tbody>
</table>
Study area | Classification | Characteristics of the study area | Reference
--- | --- | --- | ---
Right bank floodplain of the Mooki River between the cities of Caroona and Breeza, South Wales State, Australia | < 2%, as defined by the Water Act of 1912 | Floodplain surrounded by ridges, arid to semi-arid climate | NSW (2006)
St. Lucia Island and a detailed flood map of the City of Castries | < 1% - Floodplains and high flood susceptibility areas 1-5% - Medium flood susceptibility > 5% - Low flood susceptibility These areas were selected using maps of land cover type, soil type and rainfall intensity. | Island, tropical climate | Cooper and Opadeyi (2006)
Czech Moravian geomorphological region | < 2% - Well-defined floodplains 2-4% - Small, narrow pockets of floodplains can occur > 4% - No development of floodplains These values were determined based on slope combined with the height and distance to the nearest river. | Floodplain and alluvial plain of large river basins, temperate continental climate | Ded (2013)
Municipality of Alegre in Espírito Santo State, Brazil | Slope Flood susceptibility 0-2% Very high 2-5% High 5-10% Medium 10-15% Low > 15% Very low Combined with flood height levels | Tropical climate | Temporim et al. (2013)
Administrative Region of Fercal in Distrito Federal, Brazil | The same as Moreira and Pires Neto (1998) combined with altimetry data and calibrated with field observations | Municipality with frequent flood events, mountainous temperate climate | Chaves and Peixoto Filho (2015)

Source: the authors.

MATERIAL AND METHODS

Study Area

The study region is within the Rio Verde Basin, which comprises parts of the municipalities of Lucas do Rio Verde, Sorriso and Tapurah in Mato Grosso State, Brazil (Figure 1). The Rio Verde Basin is a tributary of the Paranaiba River Basin, which drains to the Paraná Basin. The region is characterized by gentle and wavy relief. Additionally, the basin is in a transition region between a mountainous tropical climate and a humid equatorial climate, with an average rainfall of 1,722.1 mm concentrated between September and April (LUBITZ et al., 2011). The flow of the Rio Verde in Lucas do Rio Verde is greater than or equal to 66.1 m3/s 95% of the time, greater than or equal to 83.2 m3/s 75% of the time, and greater than 225 m3/s 3% of the time (LUBTIZ et al., 2011). The area was originally a
transition region from Brazilian Savana (Cerrado) to Amazon Forest; however, the area is currently dominated by extensive mechanized and irrigated agriculture, except for some remaining strips of riparian vegetation.

Methods

The primary basis for the analyses was a Shuttle Radar Topography Mission (SRTM) DEM of the region of Lucas do Rio Verde (JARVIS, et al., 2008) with a resolution of 90 m. The spatial and statistical algorithms used the entire SRTM scene (enclosed by a red polygon in Figure 1). However, due to scale issues, the results for only the black dashed polygon of Figure 1 are presented in this paper, in order to assist with visual interpretation.

The DEM was pre-processed for hydrological consistency using a drainage entrenchment method with a threshold depth of 8 meters (half of the standard deviation error of the SRTM DEM). This process was performed in SAGA 2.1.2 software using the “Sink Removal” algorithm. Then, the remaining depressions were filled with the “Depressionless Map” algorithm in Grass 7 software. In Grass 7, the “r.watershed” algorithm was used to
generate the flow routes over the hydrologically consistent DEM with threshold parameters of 150 m² for the minimum basin area without drainage and 150 meters for the minimum linear flow without drainage. Then, using the “r.stream.distance” algorithm in Grass 7, the HAND indicator values (vertical distance to the nearest river and horizontal distance to the nearest river) were generated using the altimetry reference of the original DEM (before pre-processing) and the flow routes generated by the “r.watershed” algorithm from the hydrologically consistent DEM.

In the SAGA environment, the original DEM was used to calculate the slope (in percent) using a second-order polynomial algorithm with 8 parameters (ZEVENBERGEN; THORNE, 1987). The floodable cross-sectional area and the slope to the nearest drainage, both based on the vertical and horizontal distance to a drainage, were calculated using map algebra, as illustrated in Figures 2 and 3. The underlying goal of using the floodable cross-sectional area is to estimate how much the cross-sectional area of a river would need to increase to flood a specific pixel in the terrain. Both approaches (floodable cross-sectional area and slope to the nearest drainage) are based on two-dimensional relief instead of using only one dimension, which has been commonly employed in HAND model studies.

Figure 2: Illustration of the method used to calculate the floodable cross-sectional area

Source: the authors.

Based on the classification limits of the HAND and slope indicators in the academic literature (Tables 2 and 3), Table 4 and 5 provide the proposed classifications of HAND and slope values, respectively. Based on the combined classification of the slope and an auxiliary indicator proposed by Pina and Tretin (2014) and Chavez and Peixoto (2015) and using the classification values presented in Tables 4 and 5, Table 6 was generated by combining HAND and slope indices to evaluate flood susceptibility. In this paper, the slope classes of Tables 5 and 6 were applied both to the conventional slope and to the slope to the nearest drainage.
FLOODABLE CROSS-SECTIONAL AREA AND SLOPE TO THE NEAREST DRAINAGE AS EXTENSIONS OF THE HAND MODEL: MAPPING FLOOD SUSCEPTIBILITY IN THE REGION OF LUCAS DO RIO VERDE, MATO GROSSO STATE, BRAZIL

Figure 3: Illustration of the method used to calculate the slope to the nearest drainage

Source: the authors.

Table 4: Classifications proposed for flood susceptibility using the HAND model

<table>
<thead>
<tr>
<th>HAND (meters)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 0</td>
<td>Inner-riverbeds (dry season) and water bodies</td>
</tr>
<tr>
<td>0 to 1</td>
<td>Major riverbeds (rainy season), flooded areas, swamps, and backswamps</td>
</tr>
<tr>
<td>1 to 5.5</td>
<td>Seasonally flooded areas due to annual extreme events</td>
</tr>
<tr>
<td>5.5 to 8</td>
<td>Areas with medium flood susceptibility in the case of inter-annual extreme events</td>
</tr>
<tr>
<td>8 to 10</td>
<td>Areas with low flood susceptibility in the case of inter-annual extreme events</td>
</tr>
<tr>
<td>10 to 15</td>
<td>Areas with very low flood susceptibility in the case of inter-annual extreme events</td>
</tr>
<tr>
<td>> 15</td>
<td>Areas without flood susceptibility</td>
</tr>
</tbody>
</table>

Source: the authors.

Table 5: Classifications proposed for flood susceptibility using the slope

<table>
<thead>
<tr>
<th>Slope (%)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2%</td>
<td>Well-developed seasonal floodplains (provided that a floodplain is next to the river and the river is not entrenched)</td>
</tr>
<tr>
<td>2-5%</td>
<td>The possibility of flooding exists for small localized floodplains, and flood susceptibility exists in the case of extreme events</td>
</tr>
<tr>
<td>5-10%</td>
<td>Generally, no seasonal floodplains exist, but medium flood susceptibility exists in the case of extreme events</td>
</tr>
<tr>
<td>10-15%</td>
<td>Generally, no seasonal floodplains exist, but low flood susceptibility exists in the case of extreme events</td>
</tr>
<tr>
<td>> 15%</td>
<td>No flood susceptibility exists, except in the case of flash floods in areas that are very close to rivers</td>
</tr>
</tbody>
</table>

Source: the authors.

Table 6: Flood susceptibility classes combining HAND and slope indicators

<table>
<thead>
<tr>
<th>Slope/HAND</th>
<th>< 1 m</th>
<th>1-5.5 m</th>
<th>5.5-8 m</th>
<th>8-10 m</th>
<th>10-15 m</th>
<th>> 15 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2%</td>
<td>Very high</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>Very low</td>
<td>No susceptibility</td>
</tr>
<tr>
<td>2-5%</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>Very low</td>
<td>Very low</td>
<td>No susceptibility</td>
</tr>
<tr>
<td>5-10%</td>
<td>Medium</td>
<td>Low</td>
<td>Very low</td>
<td>Very low</td>
<td>Very low</td>
<td>No susceptibility</td>
</tr>
<tr>
<td>10-15%</td>
<td>Low</td>
<td>Very low</td>
<td>Very low</td>
<td>Very low</td>
<td>Very low</td>
<td>No susceptibility</td>
</tr>
<tr>
<td>> 15%</td>
<td>Very low</td>
<td>Very low</td>
<td>Very low</td>
<td>Very low</td>
<td>Very low</td>
<td>No susceptibility</td>
</tr>
</tbody>
</table>

Source: the authors.

There are many uses and concepts associated with the terms susceptibility, vulnerability and risk that are applied to flood contexts in the academic literature. In this
paper, we use the term susceptibility as an expression of the chance (frequency and associated uncertainty in temporal and spatial dimensions) of flood occurrence in each terrain pixel. The term susceptibility was chosen because part of the academic literature uses the term vulnerability as a combination of susceptibility and the resilience/adaptation capacity, while other studies use the term risk as a combination of susceptibility and potential economic-social-environmental losses (MERZ et al., 2007; BMZ; 2014).

The HAND indicator raster was truncated to integer values in ArcGIS 10.2 using the “Int” algorithm in the Spatial Analyst extension. Subsequently, the “Zonal Statistics as Table” algorithm was used to calculate the average value of the floodable cross-sectional area for each integer value of HAND. Then, equations were modeled to estimate the classification limits of the floodable cross-sectional areas based on the classification of the HAND model.

Flood susceptibility maps were developed based on the (A) HAND model, (B) floodable cross-sectional area, (C) conventional slope, (D) slope to the nearest drainage, (E) combination of HAND and the conventional slope, (F) combination of the floodable cross-sectional area and conventional slope, (G) combination of HAND and the slope to the nearest drainage, and (H) combination of the floodable cross-sectional area and slope to the nearest drainage. The choice of indicators in this paper combines the academic research line that uses the HAND model (Table 2) with the academic research line that uses slope conjugated with horizontal distance (Table 3). Figure 4 presents the general methodology of this paper.

![Figure 4: Methodology for flood susceptibility maps](Source: the authors.)
RESULTS AND DISCUSSION

The results of each methodological step for the entire SRTM scene are available in the supplementary material at: <https://app.box.com/s/bbbi951c7pqc8xyh6ukyhht11osz4l1e>. The comparison between the HAND values from 0 to 35 and the average values of floodable cross-sectional area for the entire SRTM scene are plotted in Figure 5. Additionally, the graph shows a regression function that relates both variables.

![Figure 5: Graph comparing the mean values of the HAND indicator and the floodable cross-sectional area, as well as the regression between these two variables. Source: the authors.](image)

Based on the relationship between HAND and floodable cross-sectional area presented in Figure 5, Table 7 replaces the values of HAND of Table 4 with the respective values of the floodable cross-sectional area. Analogously, Table 8 replaces the HAND values of Table 6 with the respective values of the floodable cross-sectional area (from Figure 5), combined with the slope.
Table 7: Proposed classification for flood susceptibility based on the floodable cross-sectional area

<table>
<thead>
<tr>
<th>Floodable cross-sectional area (m²)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 0</td>
<td>Inner-riverbeds (dry season) and water bodies</td>
</tr>
<tr>
<td>1 to 204</td>
<td>Major riverbeds (rainy season), flooded areas, swamps, and backwater areas</td>
</tr>
<tr>
<td>204 to 1606</td>
<td>Seasonally flooded areas due to annual extreme events</td>
</tr>
<tr>
<td>1606 to 2605</td>
<td>Areas with medium flood susceptibility in the case of inter-annual extreme events</td>
</tr>
<tr>
<td>2605 to 3589</td>
<td>Areas with low flood susceptibility in the case of inter-annual extreme events</td>
</tr>
<tr>
<td>3589 to 6681</td>
<td>Areas with very low flood susceptibility in the case of inter-annual extreme events</td>
</tr>
<tr>
<td>> 6681</td>
<td>Areas without flood susceptibility</td>
</tr>
</tbody>
</table>

Source: the authors.

Table 8: Flood susceptibility classes combining the HAND and slope indicators

<table>
<thead>
<tr>
<th>Slope (%)</th>
<th>Floodable cross-sectional area (m²)</th>
<th>< 204</th>
<th>204-1606</th>
<th>1606-2605</th>
<th>2605-3589</th>
<th>3589-6681</th>
<th>> 6681</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2%</td>
<td>Highly</td>
<td>Very high</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>Very low</td>
<td>No susceptibility</td>
</tr>
<tr>
<td>2-5%</td>
<td>Medium</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>Very low</td>
<td>Very low</td>
<td>No susceptibility</td>
</tr>
<tr>
<td>5-10%</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
<td>Very low</td>
<td>Very low</td>
<td>Very low</td>
<td>No susceptibility</td>
</tr>
<tr>
<td>10-15%</td>
<td>Very low</td>
<td>Low</td>
<td>Very low</td>
<td>Very low</td>
<td>Very low</td>
<td>Very low</td>
<td>No susceptibility</td>
</tr>
<tr>
<td>> 15%</td>
<td>Very low</td>
<td>Very low</td>
<td>Very low</td>
<td>Very low</td>
<td>Very low</td>
<td>Very low</td>
<td>No susceptibility</td>
</tr>
</tbody>
</table>

Source: the authors.

Figures 6 and 7 present maps of flood susceptibility based on HAND and the floodable cross-sectional area, using the classes proposed in Tables 4 and 7. The area visualized is interesting in terms of its fluvial geomorphological diversity. In the northwest, there are springs on a higher plateau. In the southwest, there are entrenched river valleys running through a hilly relief. In the center, there is a river with a wide floodplain. In the east, there is another river with an entrenched valley on a plateau.

Figures 6 and 7 are similar, especially because the cross-sectional area classes were calibrated based on HAND classes. However, some areas with low HAND values located relatively far from rivers exhibited low susceptibility in the map based on the cross-sectional area, especially near the springs of the northwestern plateau. On the other hand, the map of cross-sectional area expanded regions of flood susceptibility near rivers with entrenched valleys.

Figures 8 and 9 illustrate maps of the susceptibility classes based only on the conventional slope and the slope to the nearest drainage using the classes proposed in Table 5. Plain areas (slopes of up to 2%), including floodplains and hilltops, dominate the region. Areas with gentle slopes (2 to 5%) can be observed on hillslopes that separate floodplains and hilltops. Areas with slopes greater than 5% are restricted the borders of plateaus in the
conventional slope map (Figure 8) and to entrenched river valleys in the slope to the nearest drainage map (Figure 9). This suggests that despite the relevant influence of the slope on flood susceptibility in this region, an analysis based on the slope alone cannot differentiate between high-susceptibility floodplain areas and low-susceptibility hilltop areas.

A comparison of the conventional slope map (Figure 8) with the map of slope to the nearest drainage (Figure 9) shows good agreement between high slope classes (2 to 5%) near watercourses in entrenched valleys. However, in pixels far from rivers, the horizontal component of slope to the nearest drainage dominates; therefore, the classes tend to low values. In areas with local ruggedness that are near watercourses and relatively low in relation to the drainage, the slope to the nearest drainage yields lower values than the conventional slope. However, on the tops of terraces near rivers, even when the conventional slope is low, the slope to the nearest drainage yields higher values due to the reference of these values to streams.

Figure 6: Flood susceptibility according to the HAND indicator
Source: the authors.
Figure 7: Flood susceptibility according to the floodable cross-sectional area
Source: the authors.

Figure 8: Flood susceptibility according to the conventional slope
Source: the authors.
Figure 9: Flood susceptibility according to the slope to the nearest drainage
Source: the authors.

Figures 10 and 11 show the flood susceptibility maps based on HAND, the conventional slope and slope to the nearest drainage, for the classification values proposed in Table 6. Figure 12 shows a flood susceptibility map based on the floodable cross-sectional area and the conventional slope for the values proposed in Table 8. Figure 13 presents a map that combines cross-sectional area with the slope to the nearest drainage. In the four maps (Figures 10 to 13), the slope helped restrict areas of high and very high susceptibility to regions within flood plains. In addition, the slope decreased the susceptibility near the borders of plains due to hillslope breaks. For rivers in entrenched valleys, the slope generally reduced the flood susceptibility even more.

In general, the maps that used the conventional slope as auxiliary information (Figures 10 and 12) are very similar to the ones that used the slope to the nearest drainage (Figures 11 and 13). However, a detailed inspection suggests that susceptibility increased in some rugged areas next to rivers because the slope to the nearest drainage was lower than the conventional slope. These are areas with micro-ruggedness that are still close to the water level. In contrast, the flood susceptibility decreased more in small plain areas on the tops of terraces next to rivers in the maps that conjugated slope to the nearest drainage because its values were higher than those calculated using the conventional slope.
Figure 10: Flood susceptibility according to the combination of HAND and the conventional slope
Source: the authors.

Figure 11: Flood susceptibility according to the combination of HAND and the slope to the nearest drainage
Source: the authors.
Figure 12: Flood susceptibility according to the combination of the floodable cross-sectional area and conventional slope
Source: the authors.

Figure 13: Flood susceptibility according to the combination of the floodable cross-sectional area and the slope to the nearest drainage
Source: the authors.

One limitation of the approaches based on the floodable cross-sectional area and slope to the nearest drainage is that if one side of the river margin is lower than the opposite side, the water will tend to flood more on the lower side. Hydraulic models could better evaluate this type of flooding process. Moreover, the two indicators assume that a terrain cross-section
is an inclined plain without curvature, and a more concave or convex valley would yield less accurate results for both indicators (Figure 14).

Figure 14: Hypothetical case of the imprecision of the floodable cross-sectional area and slope to the nearest drainage indicators in valleys with convex relief

Source: the authors.

CONCLUSIONS

The resources (digital elevation models and hydrography) and methodological procedures (software and algorithms) used in this paper were appropriate for the analysis in the spatial context of this research, in relation to its analyzed scale/reality; i.e., they were satisfactory for the proposed analysis and did not need any adaptation. This indicates that the tools for the HAND model (Table 1) have developed and matured enough in past years to be applied to studies of this nature, as has been already demonstrated by the large body of academic literature (Table 2).

The use of slope as a complementary indicator contributed to containing the flood susceptibility classification to the fluvial plains. Both the slope to the nearest drainage and the floodable cross-sectional area exhibited spatial patterns that were consistent with the expected underlying hydrological processes. The indicator of floodable cross-sectional area, especially when combined with slope, resulted in a more spatially restricted susceptibility than when compared to the HAND model.

However, despite using classification schemes for HAND and slope based on the academic literature, it is necessary to acknowledge that this paper lacks empirical validation from ground truth or remote sensing data, and such data are necessary to evaluate the efficiency of the resulting maps. Nevertheless, the multiple combinations of indicators helped to illustrate the spatial behaviors and consistencies of each proposed indicator regarding the
plausible hydrological and environmental characteristics (Tables 4, 5 and 7) of the study area. Future studies based on hydrological data, civil defense databases and Sentinel radar images could be conducted to validate the proposed methodology. Additionally, further studies could determine the indicators and maps that are more accurate for analyses of flash floods or slow floodplain overflow, and other studies could validate the classification schemes (HAND, floodable cross-sectional area, conventional slope, and slope to the nearest drainage) in distinct geomorphological and anthropogenic-based contexts (impervious land, dams, canal construction, etc.).

ACKNOWLEDGMENTS

We thank FAPEMIG (Tecnova Edital, 13/2013), CNPq (MCTI/SETEC/CNPq Edital n. 54/2013, RHAE) and FINEP for supporting this research. Additionally, we thank WayCarbon for the development and support of the Model for Vulnerability Evaluation (MOVE), which includes the methods presented in this paper.

REFERENCES

PRINA, Z. B; TRETIN, R. Metodologia para mapeamento de áreas suscetíveis à inundação: estudo de caso para o município de Jaguari – RS. CONGRESSO BRASILEIRO DE

